Welcome to the page of the Kietzmann Lab at the AI department of the Donders Institute for Brain, Cognition and Behaviour (Radboud University). We investigate principles of neural information processing using tools from machine learning and deep learning, applied to neuroimaging data recorded at high temporal (EEG/MEG) and spatial (fMRI) resolution. Please contact us with any questions or paper requests, and follow Dr. Kietzmann on twitter (@TimKietzmann) for latest lab updates.

Please reach out to us if you are interested in joining the lab and see our page on equity, diversity, and inclusion for further information.

Research Interests

Cognitive Neuroscience meets Machine Learning. Our research group aims to understand the computational processes by which the brain and artificial agents can efficiently and robustly derive meaning from the world around us. We ask how the brain acquires versatile representations from the statistical regularities in the input, how sensory information is dynamically transformed in the cortical network, and which information is extracted by the brain to support higher-level cognition. To find answers to these questions, we develop and employ machine learning techniques to discover and model structure in high-dimensional neural data.

As a target modality, we focus on vision, the most dominant of our senses both neurally and perceptually. To gain insight into the intricate system that enables us to see, the group advances along two interconnected lines of research: machine learning for discovery in neuroscience, and deep neural network modelling. This interdisciplinary work combines machine learning, computational neuroscience, computer vision, and semantics. Our work is therefore at the heart of the emerging fields of neuro-inspired machine learning and cognitive computational neuroscience.

Twitter Feed

... a step towards the development of embodied active vision agents in the field of cognitive robotics 🧠🤖
by our PhD student @ChrisLukanov with @konigpeter and @PipaGordon

Professor for #MachineLearning @TimKietzmann receives a Starting Grant by the @ERC_Research. Kietzmann wants to better understand human #vision through #DeepLearning, improve self-learning #ArtificialIntelligence and computer vision systems.
More → https://vt.uos.de/es2t9

Underappreciated fact: The mouse has more neurons in its eye than in the entire cerebral cortex. Even you ignore the photoreceptors, the retina still has 3x more neurons than V1 cortex. Some people say the mouse is not a visual animal; more accurately it is not a cortical animal.

Tweeps, I am hiring (big time) - please spread the word.

I am looking for three postdocs in the space of neuro-inspired ML and cognitive computational neuroscience to join us at the Institute of Cognitive Science (@UniOsnabrueck).

Here is why this is a great opportunity: 🧵

A recurrent neural network called PredNet can predict the next frame in a video sequence. It also demonstrates quirks in its perceptions that resemble ones seen in monkey visual systems. https://www.quantamagazine.org/to-be-energy-efficient-brains-predict-their-perceptions-20211115/

Load More...