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Abstract

W Faces provide a wealth of information, including the identity
of the seen person and social cues, such as the direction of
gaze. Crucially, different aspects of face processing require
distinct forms of information encoding. Another person’s atten-
tional focus can be derived based on a view-dependent code. In
contrast, identification benefits from invariance across all view-
points. Different cortical areas have been suggested to subserve
these distinct functions. However, little is known about the
temporal aspects of differential viewpoint encoding in the
human brain. Here, we combine EEG with multivariate data
analyses to resolve the dynamics of face processing with high
temporal resolution. This revealed a distinct sequence of view-

INTRODUCTION

Faces are among the most important categories of visual
stimuli, providing a rich set of information that is essen-
tial to our everyday behavior. One aspect of facial pro-
cessing that has attracted considerable interest in the
past is the cortical encoding of 3-D viewpoints resulting
from rotations in depth. The variety of possible view-
points presents a considerable challenge to the visual sys-
tem, as different computational goals may rely on specific
viewpoints and different levels of viewpoint invariance.
For example, invariant face identification mechanisms
must generalize across a large range of viewpoints,
whereas shared attention must distinguish different gaze
directions. Head orientation provides a strong cue for the
recognition of another person’s attentional focus, and
therefore, different head orientations, too, need to be
distinguishable from each other (Haxby, Hoffman, &
Gobbini, 2000; Perrett, Hietanen, Oram, & Benson, 1992).
Finally, the frontal viewpoint has important social and
emotional relevance because it frequently co-occurs with
direct eye contact (Carlin, Calder, Kriegeskorte, Nili, &
Rowe, 2011; Senju & Johnson, 2009), whereas seeing a face
from all other viewpoints usually signals an averted gaze.
Befitting the complexity and variety of the underlying
computational demands, the primate brain contains a
large network of face-selective regions (Pitcher, Walsh,
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point encoding. Head orientations were encoded first, starting
after around 60 msec of processing. Shortly afterward, peaking
around 115 msec after stimulus onset, a different encoding
scheme emerged. At this latency, mirror-symmetric viewing
angles elicited highly similar cortical responses. Finally, about
280 msec after visual onset, EEG response patterns demon-
strated a considerable degree of viewpoint invariance across
all viewpoints tested, with the noteworthy exception of the
front-facing view. Taken together, our results indicate that the
processing of facial viewpoints follows a temporal sequence of
encoding schemes, potentially mirroring different levels of
computational complexity.

& Duchaine, 2011; Freiwald & Tsao, 2010; Yovel &
Kanwisher, 2005; Gauthier et al., 2000; Haxby et al.,
2000; Kanwisher, McDermott, & Chun, 1997), and dis-
tinct cortical subsystems may exist that support different
aspects of face processing (Freiwald & Tsao, 2010;
Hoffman & Haxby, 2000). Despite our increasing under-
standing of the selectivity in the various nodes of this
network (Anzellotti, Fairhall, & Caramazza, 2013; Axelrod
& Yovel, 2012; Kietzmann, Swisher, Konig, & Tong, 2012;
Carlin et al., 2011; Freiwald & Tsao, 2010; Natu et al., 2010;
Pourtois, Schwartz, Seghier, Lazeyras, & Vuilleumier,
2005; Tong, Nakayama, Moscovitch, Weinrib, & Kanwisher,
2000) and a large body of research focusing on electro-
physiological signatures of face processing (Caharel, Collet,
& Rossion, 2015; Rossion, Prieto, Boremanse, Kuefner, &
Van Belle, 2012; Eimer, 2000, 2011; Rossion & Jacques,
2008; Schweinberger, Kaufmann, Moratti, Keil, & Burton,
2007; Ttier, Herdman, George, Cheyne, & Taylor, 2006;
Joyce, Schyns, Gosselin, Cottrell, & Rossion, 2006; Liu, Harris,
& Kanwisher, 2002; McCarthy, Puce, Belger, & Allison, 1999;
Bentin, Allison, & Puce, 1996), temporal aspects of dif-
ferential viewpoint encoding schemes have not been ex-
plored in detail. The latencies at which different types
of information emerge from the cortical network can
ultimately provide valuable insights into the underlying
cortical mechanisms and could mirror different levels of
computational complexity and task importance. That is,
later effects might either be due to more complex visual
inference that requires longer computation time or result
from a less preferential treatment of the visual system that
focuses on other aspects first.
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To investigate the temporal sequence of viewpoint
processing in the human brain, we used EEG to record
cortical responses while participants viewed faces shown
from 37 different viewpoints spanning a total of 180°
(Figure 1A). We applied multivariate pattern analyses to
the visually evoked responses to extract fine-grained in-
formation about the representation of facial viewpoints
at different temporal latencies. Crucially, the high tempo-
ral resolution of the EEG measurements allowed us to in-
vestigate fast changes in the underlying representational
structures, allowing us to determine the point in time at
which the visual system exhibits different viewpoint en-
coding schemes and invariances.

To analyze the visually evoked potentials, we employed
representational similarity analysis (RSA; Kriegeskorte,
Mur, & Bandettini, 2008), a multivariate approach to study
similarities between cortical activation patterns and their
relation to the structure of experimental conditions. The
resulting representational similarity structures were ana-
lyzed using data-driven visualization techniques, followed
by a model-driven approach that explicitly tested three
different encoding schemes, each based on a different
computational demand for viewpoint encoding. The first
model tested how well different viewing directions could
be distinguished, as would be required for mechanisms
of face perception and shared attention. This model pre-
dicted that similar viewpoints lead to similar neural re-
sponses, whereas increasing angular differences between
viewpoints lead to larger differences in the visually evoked
response. It should be noted that cortical activity sensitive
to viewpoint similarity could either reflect face-specific pro-
cesses or processes sensitive to low-level differences,
because these increase as a function of viewpoint differ-
ence. Contrasting this separation of different viewpoints,
our second model focused on partial viewpoint invariance
by investigating the effects of viewpoint symmetry. This
effect describes the neural preference for select viewpoints
as well as their horizontally mirror-symmetric counterparts
(e.g., 30° and —30° rotated away from the front view are
processed similarly, compared with 30° and the intermedi-
ate angles). Such joint viewpoint selectivity would be partic-
ularly efficient for bilaterally symmetric objects, such as
faces, for which a computationally simple mirror operation
would allow the system to either effectively reduce the
number of viewpoints required to achieve full invariance
or increase the signal-to-noise ratio. Consequently, the ef-
fects of mirror-symmetric response tuning were suggested
to constitute an important intermediate computational step
in building a fully viewpoint-invariant cortical representa-
tion (Vetter, Poggio, & Bulthoff, 1994). Neural effects of
mirror symmetry were first observed in the macaque tem-
poral lobe (Dubois, de Berker, & Tsao, 2015; Freiwald &
Tsao, 2010; Logothetis, Pauls, & Poggio, 1995; Perrett
etal., 1991). In humans, the effects of viewpoint symmetry
have been reported across a wide range of higher-level
visual areas, in studies using multivariate analyses of fMRI
data (Axelrod & Yovel, 2012; Kietzmann et al., 2012), and

638  Journal of Cognitive Neuroscience

TMS (Kietzmann et al., 2015), highlighting the importance
of this computational step. As the third model of interest,
we investigated whether the frontal viewpoint is processed
differently compared with neighboring, slightly oblique
views, as the former frequently co-occurs with direct eye
contact and might consequently posit a special status.

METHODS
Participants

Nineteen healthy participants (aged 19-29 years, seven
women) took part in the experiment. All participants
had normal or corrected-to-normal visual acuity. They
were informed about their right to withdraw from the ex-
periment at any time and gave written informed consent
to participate. Because of poor task performance or tech-
nical error, 3 of the 19 participants had to be excluded
from the analyses. The study was approved by the insti-
tutional review board of the Osnabriick University and
conformed to the Declaration of Helsinki.

Stimuli

The stimulus set was created using FaceGen (Singular
Inversions, Inc., Toronto, Canada). It included four individuals
(two women), shown from 37 different angles ranging from
—90° to 90° in steps of 5°, resulting in 37 experimental con-
ditions (Figure 1A). The stimuli were presented in grayscale
on a gray background. The luminance histograms of all stim-
uli were matched using the SHINE toolbox (Willenbockel
et al., 2010). To match previous experimental work from
the literature, the face models did not include hair.

To better understand the similarity structure of the
stimulus space, we followed our previous approach
(Kietzmann et al., 2012) and estimated a low-level stimulus
similarity matrix based on a computational model of V1
simple cells. The model consists of a set of 2-D Gabor func-
tions with 17 spatial scales and four orientations (Serre &
Riesenhuber, 2004; Lee, 1996). Once applied to the exper-
imental stimuli, the model yields a high-dimensional
response vector for each stimulus, which can be used to
compute the corresponding similarity matrix using a
Pearson product-moment correlation (Figure 1B). To
visualize the similarity structure across all viewpoints to
be expected from low-level stimulus features alone, the
resulting V1 similarity matrix was projected into a 2-D
space using multidimensional scaling (MDS; Figure 1C).

Experimental Setup and Design

Each experimental session consisted of 16 blocks, with
312 trials each (4992 trials in total). Within each block,
each identity and viewpoint combination was shown
twice (296 trials) in pseudorandomized order, while pre-
venting the direct repetition of identical viewpoints. Each
trial included 400 msec of stimulus presentation, followed
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Figure 1. Exemplary stimuli. (A) A subset of all stimuli used. In the experiment, participants viewed 37 different head orientations, ranging from
—90° to 90° in steps of 5°. (B) The results of a V1 model, displayed as similarity matrix. (C) Same data as in B, displayed in 2-D after MDS was applied.

by a random ISI of 300-500 msec. The presentation of the
experimental blocks was self-paced by the participants.

To keep the participants’ attention on the stimulus dis-
play, they were instructed to maintain fixation on a cen-
tral target and to perform a color change detection task at
fixation by reporting these rare target events (16 trials in
each block) via button press. This distractor task was or-
thogonal to the experimental question. Target trials and
trials including button presses by the participants were
excluded from the analyses.

During the EEG measurements, the participants were
seated in a dark room. Stimuli were presented using a
24-in. BenQ screen (Model 2420T, Taipei, Taiwan) run-
ning at a resolution of 1920 X 1080 pixels and a refresh
rate of 120 Hz. The average latency between EEG trigger
and stimulus onset was 7.5 msec. The data shown were
corrected for this delay. The distance to the screen was
80 cm, yielding a stimulus display size of approximately
7.9° X 9.7° of visual angle.

In addition to the EEG recordings, we measured the
eye movements of our participants using an EyeLink
1000 remote eye tracker (SR Research Ltd., Mississauga,
Ontario, Canada), running at a sampling frequency of
500 Hz. The eye tracker was calibrated before the ex-
periment, and recalibration was conducted after every

fourth experimental block. Throughout the experiment,
the eye-tracking validation error was kept below an aver-
age of 0.5° visual angle.

Data Acquisition and Preprocessing

Electrophysiological data were recorded using a 128-Ag/
AgCl electrode system (ANT Neuro, Enschede, The
Netherlands), with electrodes placed on a Waveguard
cap according to the 5% electrode system (Oostenveld &
Praamstra, 2001). The data were recorded at a sampling
rate of 1024 Hz, ensuring premeasurement that the im-
pedances of all electrodes were below 10 kQ.

Data were preprocessed using the EEGLAB toolbox
(Delorme & Makeig, 2004) in the following order: First,
the data were down-sampled to 500 Hz and subsequently
filtered using a 1-Hz high-pass filter and a 120-Hz low-
pass filter as well as a notch filter around 50 and 100 Hz.
Channels exhibiting either excessive noise or strong drifts
were removed (four channels on average). After this, the
continuous data were manually cleaned, rejecting data
sequences including jumps, muscle artifacts, and other
sources of noise (on average, 17% of data were rejected
for each participant). To remove eye movement-related
artifacts, an independent component analysis (based on
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the AMICA algorithm; Palmer, Makeig, Kreutz-Delgado,
& Rao, 2008) was computed on the cleaned data. The
independent components corresponding to eye, heart,
or muscle activity were manually selected and removed,
based on criteria matching previous work on component
selection (Plochl, Ossandon, & Konig, 2012), before trans-
forming the data back into the original sensor space. The
initially removed channels were interpolated based on
the activity of their neighboring channels, selected via
channel triangulation. Subsequently, the continuous data
were divided into epochs for each trial by including data
from 100 msec prestimulus to 700 msec poststimulus, using
the time window between —100 msec and stimulus onset
for baseline correction. The resulting temporal resolution
of the multivariate pattern analysis is 2 msec. ERP topogra-
phies were plotted using Fieldtrip (Oostenveld, Fries, Maris,
& Schoffelen, 2011) and custom code. To aid visibility, ERP
topographies (Figure 3) and overview similarity matrices
(Figure 4) are based on down-sampled data (100 Hz).

Data Analysis
Multivariate Analyses of EEG Data

To test for the temporal development of facial viewpoint
encoding, we performed a multivariate pattern analysis
on the visually evoked potentials, computing representa-
tional similarity matrices across all experimental condi-
tions. Each entry in a given similarity matrix was
computed using a Pearson product—-moment correlation
(Khaligh-Razavi & Kriegeskorte, 2014; Kriegeskorte, Mur,
Ruff, et al., 2008) on the respective ERP activation pat-
terns across all EEG channels. The resulting matrices
were ordered based on the rotational angle of the faces,
ranging from 90° to —90°. Neighboring cells in each sim-
ilarity matrix therefore represent neighboring viewing
angles, and the resulting matrix depicts the overall simi-

larity structure across all conditions. Elements along the
main diagonal were estimated by comparing the same
viewpoint across different identities (comparisons of
the same identity and viewpoint yield a correlation of 1
by definition and were therefore excluded). Computed
for every point in time and participant, the resulting
3-D structure (Condition X Condition X Time) reflects
the temporal development of representational similarity
across all experimental conditions (Cichy, Pantazis, &
Oliva, 2014; Carlson, Tovar, Alink, & Kriegeskorte, 2013).

Representational similarity matrices allow for data-driven
analyses as well as comparisons with model predictions,
such as low-level similarity, control conditions, and other
behavioral measures (Kietzmann et al., 2012; Kriegeskorte,
Mur, & Bandettini, 2008). To investigate the dynamics of
viewpoint encoding across time, we performed data- and
model-driven analyses on the spatiotemporal similarity ma-
trices. For the data-driven approach, we first visualized the
average empirical similarity at each point in time by pro-
jecting the data into a 2-D space using nonmetric MDS.
The resulting 2-D arrangement of conditions closely resem-
bles the similarity structure in the original data but is visu-
ally more accessible. To account for the temporal
smoothness of the underlying data, each MDS optimization
was seeded with the MDS result computed for the previous
time point (Carlson et al., 2013). The initial MDS solution
was based on a random position seed.

As noted earlier, different computational goals likely
rely on different viewpoint encoding schemes. On the ba-
sis of the respective requirements, distinct predictions
about the optimal representational similarity structure
can be derived and used as model predictions that are
then matched against the empirical data. In addition to
the data-driven analyses, three encoding models were
defined and tested: The viewpoint similarity model pre-
dicts decreasing similarity values with increasing angular
difference, the viewpoint symmetry model additionally
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Figure 2. Model predictions. (A) The viewpoint similarity model predicted decreasing neural response similarity with increasing angular difference
between viewpoints. (B) The viewpoint symmetry model focused on partial viewpoint invariance by explicitly testing whether mirror-symmetric

viewpoints are processed more similarly than nonsymmetric angles. (C) The frontal viewpoint model compared 0° (frontal) against +5° viewpoints by
testing their respective similarities against all other viewpoints in the data set. Blue = negative model values; yellow = positive; white = not a number.
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predicts high similarity values for mirror-symmetric
viewing angles, and the frontal viewpoint model predicts
distinct EEG patterns for the front-facing view as com-
pared with adjacent views (Figure 2).

Viewpoint similarity: Communication and shared
attention require the recognition of another person’s
direction of gaze. For this, the overall head orienta-
tion is a reliable indicator, raising the question where
and when different facial viewpoints are neurally sep-
arated. Potentially based on low-level stimulus fea-
tures, early visual areas in macaque and human
cortex have been shown to allow for reliable discrim-
ination between different face viewpoints (Carlin,
Rowe, Kriegeskorte, Thompson, & Calder, 2012;
Kietzmann et al., 2012; Freiwald & Tsao, 2010). In
contrast, higher-level visual areas are increasingly in-
variant to changes in viewpoint (Axelrod & Yovel,
2012, 2015; Anzellotti et al., 2013; Kietzmann et al.,
2012; Freiwald & Tsao, 2010; Natu et al., 2010;
Kriegeskorte, Formisano, Sorger, & Goebel, 2007).
Nevertheless, it is possible that different viewpoints
remain separable, even in higher visual areas, if differ-
ent readout strategies are used (DiCarlo & Cox,
2007). To assess at what latencies head orientations
can be discriminated, we designed a model that pre-
dicts that neighboring viewpoints elicit similar neural
responses, whereas decreasing similarities are ex-
pected with increasing viewpoint difference. Maximal
similarity is expected for identical viewpoints (tested
across facial identities), that is, across the main diag-
onal of the similarity matrix. The model implicitly
tests the extent to which disparate viewing angles
can be distinguished by the activity patterns they
evoke (Figure 2A). Because rank-based methods are
employed to estimate the fit between model and em-
pirical data (detailed below), the viewpoint similarity
model does not make specific predictions about the
exact rate of similarity falloff across viewpoints and
matches any strictly decreasing similarity function. It
therefore presents a more general approach, com-
pared with the predictions of the Gabor model used
to visualize the stimulus space, which is potentially
better applicable to smooth EEG data.

Viewpoint symmetry: Whereas some cortical computa-
tions on face stimuli require a separation of differently
oriented viewpoints, others require information that is
viewpoint invariant. Achieving invariance is a computa-
tionally challenging task, as faces seen from different
perspectives differ largely in their retinal projections.
To cope with this complexity, the visual system relies
on multiple view-specific representations that span
the whole space of possible viewpoints. Together,
these units support invariant recognition (Perrett,
Oram, & Ashbridge, 1998; Ullman, 1998; Logothetis
et al., 1995; Biilthoff & Edelman, 1992). In addition to
this view-based code, however, it has been noted that

bilaterally symmetric objects, such as faces, allow for a
computational shortcut, because mirror-symmetric
viewpoints are left/right mirror images of each other
(Vetter et al., 1994). Indeed, corresponding effects
were reliably shown using single-cell recordings
(Freiwald & Tsao, 2010; Perrett et al., 1991) and fMRI
(Dubois et al., 2015) in the macaque. In humans, the
effects of viewpoint symmetry have also been reliably
observed in behavioral (Vetter et al., 1994), fMRI
(Axelrod & Yovel, 2012; Kietzmann et al., 2012), and
TMS (Kietzmann et al., 2015) experiments. To investi-
gate the temporal latency of the effect, we included a
viewpoint symmetry model in our RSA predictors. This
model predicts that directly neighboring viewpoints as
well as mirror-symmetric views will elicit similar cortical
response patterns. Because the experimentally tested
viewpoints are sorted from +90° to —90° in the corre-
sponding representational similarity matrices, values
around the principal diagonal (top left to bottom right)
indicate similarity across directly neighboring views.
The secondary diagonal (top right to bottom left)
defines mirror-symmetric viewpoints, that is, the simi-
larity between selected viewpoints and their mirror-
symmetric counterparts. Because of this layout, the
effects of viewpoint symmetry predict increased similar-
ity values along both diagonals (X shape, shown in
Figure 2B). To derive the model prediction, we used
the viewpoint similarity model and added a horizontally
mirrored version to define the secondary diagonal.

Frontal viewpoint: Compared with oblique view-
points, a direct frontal view of a face has distinct im-
plications for communication and shared attention. It
is horizontally symmetric and frequently co-occurs
with direct eye contact. In the current experiment,
the directly frontal viewpoint was the only condition
that exhibited direct eye contact, whereas neighbor-
ing viewpoints, differing by only a 5° rotation,
signaled an averted gaze. In line with this observation,
the frontal viewpoint model predicts that the 0° (fron-
tal) viewpoint elicits a neural response that is distinct
from the response to all other viewpoints. The most
conservative approach to testing this prediction is to
contrast the frontal with its directly neighboring,
slightly oblique viewpoints (+5° and —5°), which
function as controls. Specifically, a “special status”
of the frontal view predicts that the average represen-
tational similarity between the 0° and all other
viewpoints is smaller than the average similarity be-
tween *5° face views and all other viewpoints. Ac-
cordingly, the model matrix contains negative
weights for all similarity estimates involving the fron-
tal viewpoint (shown in blue in Figure 2C) and posi-
tive weights for correlations of slightly leftward- and
rightward-facing viewpoints (shown in yellow). Please
note that, although the viewpoints differ in the direc-
tion of gaze (direct vs. averted), the overall visual dif-
ferences between the tested conditions are small.
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To statistically evaluate the different models, we used
a Spearman’s rank correlation (Khaligh-Razavi &
Kriegeskorte, 2014; Kriegeskorte, Mur, & Bandettini,
2008) between the model prediction and the empirical
similarity matrices of each participant. This approach as-
sumes that the relationship between model and data
should maintain ordinal relationships and to avoid assum-
ing linearity of the relationship between model and data.
We then calculated a ¢ test across participants to test, for
every point in time, and to determine whether the correla-
tion values (Fisher z corrected) were significantly different
from zero.

To control for the multiple statistical comparisons per-
formed, one for each time point, we applied a cluster-
based permutation test (Maris & Oostenveld, 2007). All
connected time points exhibiting a p value of <.01 were
considered as empirical candidate clusters. That is, only
time points that were individually significant at p < .01
were included for further analysis. The cluster null distri-
bution was computed by randomly flipping the sign of
the correlation values of each participant (in line with
the prediction of a zero correlation; Good, 2013). In each
iteration, the corresponding sign flip for a participant was
applied to the whole time series, that is, to all time
points, to preserve the temporal smoothness of the orig-
inal data, as clusters are defined in the temporal domain.
For every permutation (100,000 in total), we followed the
same analysis steps as before and estimated positive and
negative clusters to be expected under the null hypothe-
sis. In every iteration, only the strongest positive and neg-
ative clusters were kept for the null distribution (max
sum ¢ statistic). The originally observed, empirical clus-
ters were then compared with this cluster null distribu-
tion, computing the probability of observing a cluster
equal or larger than the empirical one by chance alone.
Only clusters with a p value of <.05 are reported in the
following (because we separately tested for positive and
negative clusters, a p < .025 was applied to either side,
similar to a two-sided ¢ test).

Noise Ceiling Estimates

To estimate an upper bound for model performance, we
computed the noise ceiling of the RSA data (Nili et al.,
2014) across time. Given an (unknown) true similarity
structure that underlies data generation for all partici-
pants, this approach uses the empirically observed simi-
larity matrices to estimate the extent to which noise
present in the data might limit the maximal level of per-
formance that can be achieved by any model prediction.
The noise ceiling consists of a lower bound and an up-
per bound. The lower bound is computed by a leave-
one-participant-out approach, in which the average sim-
ilarity matrix of all but one participant is correlated with
the data of the left-out participant. The upper bound is
overfitted to the individual participant, as it is based on
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the overall average similarity matrix. Because the noise
ceiling is estimated from the empirical similarity matri-
ces, it depends on the cells that are included in the
analyses. Thus, if models predict different parts of the
similarity matrix, they require different noise ceiling
estimates. Viewpoint similarity and viewpoint symmetry
both rely on the whole matrix and therefore share a
noise ceiling estimate. In contrast to this, the frontal
viewpoint model provides a prediction for the subset
of cells in the similarity matrix and therefore yields its
own noise ceiling.

Sensor Searchlight Analysis

To estimate the spatial origin of the effects observed, we
implemented a sensor-based searchlight analysis. For
each EEG channel, we defined a set of neighboring sen-
sors (i.e., searchlight window within a distance of 2 cm in
the 2-D spatial layout; 19.8 neighbors on average per
channel). All channels in the local searchlight were then
used together to estimate the local representational sim-
ilarity matrices for each point in time. The resulting sim-
ilarity structure has size 72¢han X 7gme X Pcond X Peond-
Once computed, the different model predictions (view-
point similarity, viewpoint symmetry, and frontal view-
point) were tested for each searchlight location, storing
the corresponding correlation values in the respective
searchlight center. Please note that neural dipoles can
also project to distal sensor groups, which are not neces-
sarily spatial neighbors. The results of the current sensor
searchlight analysis are therefore limited to spatially con-
nected regions exhibiting a selected effect, neglecting ef-
fects that could be observed across more distant sensors.

Because the effect latencies were known for the indi-
vidual models from our previous analyses including all
sensors, the searchlight analysis was applied specifically
for these predefined temporal windows of interest.

Eye-tracking Control

Our participants were instructed to maintain fixation on a
central target while performing a color change detection
task at fixation. We nevertheless tested whether eye
movements might have contributed to any of the ob-
served effects. This was accomplished by computing a
similarity matrix from the recorded eye-tracking data of
the respective experimental conditions. We first com-
puted a smoothed, 2-D probability distribution (fixation
density map) for every participant, condition, and time
point. Similar to the EEG activity and the V1 model, we
then correlated the eye-tracking data of each condition
with every other condition. This resulted in a 3-D corre-
lation matrix (Condition X Condition X Time), which de-
scribes the similarity structure of the eye-tracking data for
each individual participant and time point. As a next step,
we again focused on previously established temporal clus-
ters of significant model fits and used each participant’s
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eye-tracking similarity matrices as control data for a partial
Spearman’s rank correlation analysis. Specifically, for a
given temporal window of interest, we tested the fit
between model and EEG similarity matrix, while using
the eye-tracking similarity matrix as control. The (Fisher z
transformed) partial correlation values were then subject
to a ¢ test across participants, while controlling for mul-
tiple statistical comparisons via Bonferroni correction.

RESULTS

The basis of all analyses performed was the transforma-
tion of the high-dimensional EEG data into representa-
tional similarity matrices, which depict the pattern
similarity of the visually evoked responses across all con-
ditions. Similarity matrices were computed and statisti-
cally evaluated for each time point individually at a
temporal resolution of 2 msec, allowing us to investigate
fast changes in the representational similarity structure,
indicative of changes in the underlying viewpoint encod-
ing. Exemplary EEG topographies, underlying the multi-
variate analyses, are shown in Figure 3.

Data-driven Analyses

To explore the temporal development of viewpoint pro-
cessing, we visualized the average similarity matrix at
each point in time and performed an MDS analysis on
the data to project it into 2-D space.

The similarity matrices indicated distinct and temporally
separated stages of face processing (Figure 4). Initially,
the similarity matrices appear unstructured and random

in their patterns. Then, starting around 60 msec after
stimulus onset, the principal diagonal exhibits enhanced
correlation values. At this point in time, neighboring
viewing angles exhibit similar evoked activity patterns,
in line with the response properties of lower-level retino-
topic visual areas (Figure 4A and B). After this, at around
120 msec, we observed strong effects of viewpoint sym-
metry: Mirror-symmetric viewpoints exhibited increased
correlations compared with intermediate viewpoints
(Figure 4C). At a later point in time, around 300 msec,
an effect specific to frontal viewpoints was observed.
Whereas all other viewpoints exhibited comparable simi-
larity in the evoked response patterns, the cortical re-
sponses to frontal views were decidedly different. The
same pattern of results can be observed in the MDS pro-
jection. The alignment of conditions during baseline is
largely random, whereas the arrangement after about
120 msec of processing is almost perfectly ordered with
respect to overall rotational angle, with the addition of
close proximity for symmetric viewpoints in this multidi-
mensional space. At a considerably later point in time, the
order of almost all viewpoints seems mostly random with
one marked exception—frontal viewpoints. They appear
at a large distance to all other conditions (Figure 4D),
including viewpoints that differ by only small rotation
angles, such as *5°.

The two later effects observed in the empirical similar-
ity structures, viewpoint symmetry and the special status
of the frontal view, are distinctly different from the rep-
resentational similarity obtained from a model of V1 re-
sponses to our face stimuli, which was analyzed using
the same processing stream as the EEG data. For the
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Figure 3. EEG topographies. Scalp topographies of the visually evoked potentials across time (shown for a subset of viewpoints and latencies). These
data were used to estimate representational similarity matrices across time to reveal changes in the underlying encoding schemes.

Kietzmann et al. 0643



150 180
0.86

0.68

330 360

480 510

O .

B C
—60 msec 120 msec 360 msec
)
I, B v,
-55 3 ® )
R Y BTR g% ~ = ® ~ B - -5
£ 75 5 el 2 s ) -9 s . 5
S . S : i 1
g B g2 o ) e \s
: S = £ £ K}
e M 15 a -4 % 8 R 8
= 2 e S a - @ LAY
a -39 gy '8 Q 23 Zsp TR T8 oy QS g “Bgo®
= RN e = o hgheee, = By
- 2 7
-15 g & -9 3 3_%3 i 4;50 ® 5% %9 %

MDS Dimension 1 MDS Dimension 1 MDS Dimension 1

Figure 4. Empirical similarity matrices and MDS results. The representational similarity matrices obtained from the high-dimensional EEG data were
visualized in their original form and projected into two dimensions using MDS. (A) The development of representational similarity across time.
Please note that the color code changes in each panel to best visualize the underlying structure. B, C, and D show data at time points representative
of the overall development of the similarity structure based on their MDS projection. Symmetric viewpoints are connected via thin gray lines.

V1 model, neighboring viewpoints exhibited strong sim-
ilarity, which decreased with increasing angular differ-
ence (Figure 1B and C). For more extreme viewpoints,
a slightly increased similarity for mirror-symmetric view-
points can be observed. This effect has been reported
previously for a similar stimulus set of faces without hair
(Kietzmann et al., 2012). However, the effect is small,
compared with the strong effects of viewpoint symmetry
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observed in the EEG data. A more detailed statistical anal-
ysis of the contribution of low-level similarity to the effects
observed is provided below in the model-based analyses.

Model-based Analyses

To better understand the dynamics of viewpoint en-
coding, we extended our data-driven analyses with a
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model-based approach. Three models were defined in
close agreement with the predictions of different task
requirements: viewpoint similarity, an encoding scheme
contributing to mechanisms of shared attention; view-
point symmetry, supporting viewpoint-invariant mecha-
nisms of face identification; and frontal viewpoint,
focusing on the special status of frontal views, presum-
ably differentiating direct from averted gaze.

The results of the three model fits are presented in
Figure 5 and Table 1. All statistical analyses were cluster-
corrected at a threshold of p < .05 (cluster inclusion

subject to p < .01 for each individual time point). The
analysis of the viewpoint similarity model (Figure SA)
revealed multiple significant clusters. The earliest cluster
emerged at around 60 msec after stimulus onset and
remained statistically significant throughout the whole
period analyzed (see Table 1 for exact latencies and clus-
ter p values). These results indicate that viewpoints re-
main distinguishable from early to late periods of visual
processing. Effects of viewpoint symmetry (Figure 5B)
are expressed slightly later, starting after around 80 msec
of visual processing, peaking around 115 msec. Finally,
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Figure 5. Model results and noise ceiling (shown as gray backdrop). (A) Results of the viewpoint similarity model. Gray bars below the figure
mark significant time windows, corrected for multiple comparisons using a cluster-based correction method. (B) The viewpoint symmetry model
estimated whether mirror-symmetric viewpoints lead to larger similarity estimates as compared with nonsymmetric ones. (C) The frontal viewpoint
model tested whether the frontal viewpoint leads to different similarity structures as compared with slightly oblique viewpoints, rotated 5° away

from the frontal view.
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Table 1. Cluster Statistics

Time Cluster Statistic Cluster p
Viewpoint similarity

0.065-0.249 550.5 <.001
0.271-0.329 111.8 .003
0.365-0.421 105.1 .003
0.427-0.501 141.2 .002
0.565-0.589 41.8 017
0.657-0.677 36.3 .020
Viewpoint symmerry

0.079-0.175 328.2 <.001
0.189-0.231 77.0 .006
0.289-0.531 522.3 <.001
0.541-0.579 91.9 .005
0.643-0.667 45.8 016
Frontal viewpoint

0.281-0.307 48.5 .007
0.389-0.419 71.0 .002

This table shows the latencies and statistics for all significant temporal
clusters. Clusters with a p value smaller than .025 were considered
significant (applied to both negative and positive clusters, this yields
an overall cluster-corrected value of p < .05). Cluster inclusion was con-
tingent on an individual sample statistic of p < .01.

differences in similarity structure between frontal and di-
rectly neighboring views (%5°) were observed in two later
clusters (Figure 5C), starting at around 280 msec and end-
ing around 420 msec. Taken together, our model-based
analysis revealed a temporally distinct sequence of view-
point encoding stages in the human visual system. Effects
of viewpoint similarity occurred first, followed by effects
of viewpoint symmetry, which are again followed by

differences between frontal and oblique viewpoints that
occurred at comparably late stages of processing. Inter-
estingly, whereas the viewpoint symmetry model ap-
proaches the noise ceiling (i.e., maximal expected
correlation for true model given the noise in the data)
during the early phase of processing, the frontal view-
point model reaches the noise ceiling at later stages. This
may indicate a true change in the underlying neural
encoding scheme from early to late face processing.

By definition, the viewpoint symmetry model contains
aspects related to viewpoint similarity. It is therefore pos-
sible that the effects of viewpoint similarity contribute to
the observed effects of viewpoint symmetry. To differen-
tiate these two representational aspects, we split the
viewpoint symmetry model into its two constituent diag-
onals: One part corresponds to viewpoint similarity (\);
the other corresponds to the horizontally flipped coun-
terpart (/), called symmetry-only in the following. We
then used a partial Spearman’s rank correlation to esti-
mate the effect of symmetry-only while controlling for ef-
fects of viewpoint similarity. This revealed a later effect of
viewpoint symmetry, ranging from 111 to 149 msec after
stimulus onset (cluster p = .003, cluster statistic = 88.2).
This more conservative measure of viewpoint symmetry
reaches statistical significance much later than the onset
of viewpoint similarity, starting around 50 msec earlier,
and therefore indicates two separate representational
stages. The effects of frontal viewpoint remained un-
changed after using viewpoint similarity as a control in
a corresponding partial correlation analysis.

Having demonstrated a distinct representational se-
quence of viewpoint encoding schemes based on the
whole set of EEG sensors, we performed a more fine-
grained, sensor-based searchlight analysis to spatially local-
ize the effects observed (Figure 6). The effects of view-
point similarity were localized in the earliest time window
(60-80 msec) to ensure that the effects of viewpoint sym-
metry are not (yet) present. In line with the early latency,
the resulting effect topography suggests an occipital gen-
erator. Next, we localized the effects of viewpoint symme-
try in a more conservative time window (111-149 msec).
This revealed a more lateralized topography, in line with

Viewpoint Similarity
(Latency 60-80 msec)

Viewpoint Symmetry
(Latency 111-149 msec)

0.09
0.02

Frontal Viewpoint
(Latency 281-307 msec)

(Latency 389-419 msec)

Figure 6. Searchlight results. To better localize the observed effects, a sensor-based searchlight analysis was performed. Focusing on previously
established temporal windows of interest for the given models, the results depict a progression from occipital to occipitotemporal to central
sensor locations. Please note, however, that the analysis can only detect effects in spatially connected sensor clusters, omitting effects across spatially

distinct regions.
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389-419 msec
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0.942

994 0.936
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Figure 7. Eye-tracking control. To test and control for the effects of residual eye movements, we computed similarity matrices based on the
average fixation distribution of each participant in each condition for each time window of interest. The resulting similarity matrices revealed only

minor effects, which run counter to the observed EEG effects.

stronger neural responses to faces in the right hemisphere.
Finally, the special status of the frontal viewpoint (281-307
and 389-419 msec) was observed most strongly in central
electrode locations.

We also performed a control analysis to ensure that
any residual effects of eye position, which might have oc-
curred despite the color change detection task at fixation,
could not account for the results. Using the eye-tracking
data recorded during the experimental trials, we esti-
mated 2-D fixation density maps, one for every participant,
condition, and time point. These were then used to com-
pute eye-tracking similarity matrices for each participant
(Figure 7). These individually defined matrices were then
used as controls in a partial Spearman’s rank correlation
between model prediction and EEG data. That is, we
asked whether the explanatory power of our models
could be explained away by differential eye movements
during the respective temporal window of interest.
Focusing on previously established windows of interest
and testing partial model correlations against zero, all
model predictions remained statistically significant (view-
point similarity: p < .0001, #(15) = 5.8; viewpoint sym-
metry: p < .0001, £(15) = 9.1; fontal viewpoint: p < .005,
t(15) = 3.9; p < .0005, t(15) = 5.4). Residual effects of
eye position are therefore unlikely to explain the effects
observed.

Finally, to rule out explanations based on differences
in attentional load introduced by the distractor task, we
tested the behavioral performance of our participants
across all viewpoint conditions using a repeated-measures
ANOVA. We found no significant differences ind’ (p = .34,
F(36, 15) = 1.09), hit rate (p = .30, F(36, 15) = 1.12), or
false alarm rate (p = .53, F(36, 15) = 0.96) across experi-
mental conditions, indicating that differences in atten-
tional load cannot account for the observed EEG effects.

DISCUSSION

We investigated the representational dynamics of face
viewpoint encoding in the human brain by applying mul-
tivariate analyses to high-dimensional EEG data, recorded
at high temporal resolution. Our data-driven and model-

based analyses indicate a temporal sequence of distinct
viewpoint encoding stages in the EEG activation patterns.
Neural responses that reflected viewpoint similarity oc-
curred first, followed by strong effects of viewpoint sym-
metry. At a later processing stage, the frontal view led to
significantly different activation patterns compared with
all other viewpoints. Ruling out alternative explanations
for the effects observed, we showed that viewpoint sym-
metry and specialized processing of front-facing views
cannot be explained in terms of viewpoint similarity
and that none of the effects observed can be explained
in terms of residual eye movements or differences in dis-
tractor task performance.

The distinction between different head orientations
was present early and lasted throughout the entire ana-
lyzed time window of 700 msec. The early onset of this
viewpoint similarity effect and the results of the sensor-
based searchlight analysis suggest that the initial discrim-
ination of head orientation was mainly driven by low-level
stimulus properties. A possible explanation of the fact
that the effects lasted throughout the whole trial is that
low-level stimulus properties remain an important factor
in visually evoked responses, even at later temporal
stages of visual processing. These results are in line with
the results of recent fMRI studies demonstrating residual
low-level effects in higher-level visual areas (Rice, Watson,
Hartley, & Andrews, 2014; Wardle & Ritchie, 2014;
Kietzmann et al., 2012; Yue, Cassidy, Devaney, Holt, &
Tootell, 2011). A second, nonexclusive explanation is that
the initial sensory coding of head orientation with a specific
similarity structure was transformed to action-oriented
activity patterns that obey identical relations. Indeed, the
mapping of head orientation to the location of joint
attention is continuous, that is, similar visual stimuli indi-
cate similar locations for joint attention. Thus, this inter-
pretation is also compatible with an action-oriented
interpretation of cortical representations (Engel, Maye,
Kurthen, & Konig, 2013).

Using multivariate analyses of fMRI data, the effects of
viewpoint symmetry were previously shown to be preva-
lent across a large range of higher-order visual areas
(Kietzmann et al., 2012). In addition to replicating the
general pattern of these results with a different method
for measuring neural activity, our current findings extend
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these results by providing an estimate of the latency of
these face processing effects. In general agreement with
electrophysiological data from macaque monkeys
(Freiwald & Tsao, 2010), the effects of viewpoint symme-
try were found to occur at around 110 msec after stimu-
lus onset. This finding constrains possible models of
viewpoint symmetry and renders explanations based on
extended, recurrent processing less likely. Viewpoint
symmetry was observed later than the effects of head ori-
entation but significantly earlier than one might expect
for fully viewpoint-invariant effects of face identification,
as has been estimated in previous experimental work.
For instance, behavioral data from a rapid go/no-go face
identification task suggest that people need about
260 msec to identify a face, when accounting for the time
required to perform the corresponding motor response
(Barragan-Jason, Besson, Ceccaldi, & Barbeau, 2013).
Electrophysiological experiments suggest a similar latency.
Although the N170 component, with an onset of around
130 msec, was previously shown to exhibit effects of face
identification (Jacques & Rossion, 2006), the N170 does
not represent a fully viewpoint-invariant code (Caharel
et al., 2015; Ewbank, Smith, Hancock, & Andrews, 2008;
Miyakoshi, Kanayama, Nomura, lidaka, & Ohira, 2008).
Studies of a later face-selective N250 component, however,
do show evidence of viewpoint invariance processing
(Caharel et al., 2015; Schweinberger, Pickering, Jentzsch,
Burton, & Kaufmann, 2002). Finally, the estimated latency
of viewpoint symmetry directly matches the typically ob-
served latencies of the higher-level visual areas (Ghuman
et al., 2014; Parvizi et al., 2012; Liu, Agam, Madsen, &
Kreiman, 2009), which were previously found to exhibit
viewpoint symmetry using fMRI (Kietzmann et al., 2012).
Taken together, these results are in line with the proposal
that viewpoint symmetry might act as an intermediate step
in achieving full viewpoint invariance, after the effects of
head orientation and preceding a fully invariant code
(Freiwald & Tsao, 2010).

In line with the vast majority of face processing studies,
we decided to present the face stimuli foveally to study
cortical responses under more natural viewing conditions
and to obtain an improved signal-to-noise ratio. Recently,
studies have evaluated the extent to which viewpoint en-
coding effects can generalize across changes in retinal
position in the fusiform face area (FFA). Testing across
peripheral stimulus positions along the vertical meridian,
no position-invariant effects of viewpoint symmetry were
observed (Ramirez, Cichy, Allefeld, & Haynes, 2014). Although
further experiments are required to fully understand the
origins of this symmetry null effect, an explanation can
be given based on the fact that higher-level visual represen-
tations are not position-invariant (Hong, Yamins, Majaj, &
DiCarlo, 2016; Golomb & Kanwisher, 2012; Kravitz, Vinson,
& Baker, 2008; Hung, Kreiman, Poggio, & DiCarlo, 2005).
Furthermore, FFA exhibits a much reduced signal-to-noise
ratio in response to stimuli presented in the periphery
(Hasson, Levy, Behrmann, Hendler, & Malach, 2002; Lerner,
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Hendler, & Malach, 2002; Levy, Hasson, Avidan, Hendler, &
Malach, 2001) and is better tuned for foveally presented
stimuli (Kay, Weiner, Kay, & Weiner, 2015). Both factors
strongly affect the ability to find effects driven by distinct
activation patterns.

In addition to these effects of viewpoint symmetry, we
observed distinct cortical activation patterns for the front-
facing viewpoint at a much later processing stage. As a
possible explanation for this effect, we noted that the
front view differed from the others in terms of direct ver-
sus averted gaze. Such effects, which are also known as
the “eye contact effect,” were previously studied in the
context of social attention (Nummenmaa & Calder,
2009) and social neuroscience (Itier & Batty, 2009; Senju
& Johnson, 2009). Interestingly, we observed such effects
while our participants performed a color change detec-
tion task at fixation, consistent with behavioral studies
suggesting that automatic processing of direct gaze can
occur, even when attention is drawn away from the face
stimulus (Yokoyama, Sakai, Noguchi, & Kita, 2014).
Despite the importance of direct eye contact for social
cognitive inferences (Nummenmaa & Calder, 2009;
Baron-Cohen, Wheelwright, Hill, Raste, & Plumb, 2001),
the results of previous electrophysiological studies on the
topic are mixed. Whereas one study suggested that the
effects of eye contact occur after only 160 msec of process-
ing (Conty, N'Diaye, Tijus, & George, 2007), others have
not found differences between direct and averted gaze at
similar latencies (Taylor, Itier, Allison, & Edmonds, 2001).
The latter result is in line with univariate analyses per-
formed in developmental studies that indicate diminishing
effects of eye contact with adulthood (Grice, Halit, Farroni,
& Baron-Cohen, 2005). Finally, data from intracranial
recordings suggest that the effects of direct versus averted
gaze occur during later stages of processing (>200 msec;
Pourtois & Spinelli, 2010), in agreement with the current
observations. Given the strength of the effects observed
here, it would be interesting to revisit studies that produced
negative results and to reanalyze the data using multivariate
pattern analyses. As indicated above, the front-facing view is
a reliable predictor for direct eye contact. It is not yet clear,
however, which mechanisms could aid the visual system in
detecting this particular viewpoint. A potential factor could
be the reflectional symmetry of front-view faces. Studies of
visuospatial regularity report a sustained posterior negativ-
ity for reflectionally symmetric dot patterns (Makin, Wilton,
Pecchinenda, & Bertamini, 2012). Although previous effects
of eye contact were shown based on nonsymmetric stimuli
(Pourtois & Spinelli, 2010), demonstrating that the effects
of eye contact exist independently of reflectional symmetry,
it is conceivable that the reflectional symmetry of frontal
face views contributes to their detection in a visual scene.

In search for a cortical origin of gaze direction effects,
converging evidence from neurophysiology (Perrett et al.,
1992; Perrett & Smith, 1985) and fMRI experiments has
emphasized the role of the STS. In addition to the work
by Carlin et al. (2011), experiments by Hoffman and Haxby
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(2000) suggest that the processing of facial information is
separated between the STS and FFA. Whereas the FFA was
suggested to process information related to facial identity
(Axelrod & Yovel, 2015), the STS was found to be involved
in the processing of changeable aspects of faces, including
the perception of gaze direction (Haxby et al., 2000). In line
with this, Calder et al. (2007) used an fMRI adaptation para-
digm to study the encoding of gaze direction and found that
the anterior STS and inferior parietal cortex contain informa-
tion that allows for a separation of different gaze directions.

It should be noted that head orientation and gaze direc-
tion were congruent in the currently used stimulus set. It
was therefore not possible to separate cortical signals relat-
ed to gaze and head orientation in this study. Evidence in
favor of such a separation was provided by Carlin et al.
(2011), who demonstrated that the STS contains finely
graded information about the direction of gaze, indepen-
dently of head orientation and physical image features.
Such evidence of a high-level encoding of gaze direction
is in line with data from a behavioral adaptation paradigm,
in which effects of gaze direction were demonstrated de-
spite changes in size and head direction (Jenkins, Beaver,
& Calder, 2006). Moreover, electrophysiological studies
using the same paradigm found late effects, starting around
250 msec after stimulus onset (Kloth & Schweinberger,
2010; Schweinberger, Kloth, & Jenkins, 2007). In context
of the current analyses and results, it would be interesting
to combine both methodologies, gaze adaptation and
spatiotemporal pattern similarity, to investigate how gaze
adaptation affects the dynamics of viewpoint encoding.
Future work might further benefit from the currently used
analysis approach to investigate the temporal development
and separability of head and gaze direction signals.

In summary, our multivariate analyses of visually evoked
potentials revealed that the cortical representations of
facial viewpoints traverse a distinct sequence, expressing
different encoding schemes at different latencies. Such
representational stages may reflect the complexity of the
underlying task and the priority that the brain devotes to
the respective computation.
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